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Abstract 11 

Sample mix-ups occur when samples have accidentally been duplicated, mislabelled or 12 

swapped. When samples are subsequently genotyped or sequenced, this can lead to 13 

individual IDs being incorrectly linked to genetic data, resulting in incorrect or biased research 14 

results, or reduced power to detect true biological patterns. We surveyed the community and 15 

found that almost 80% of responding researchers have encountered sample mix-ups. 16 

However, many recent studies in the field of molecular ecology do not appear to systematically 17 

report individual assignment checks as part of their publications. Although checks may be 18 

done, lack of consistent reporting means that it is difficult to assess whether sample mix-ups 19 

have occurred or been detected. Here, we present an easy-to-follow sample verification 20 

framework that can utilise existing metadata, including species, population structure, sex and 21 

pedigree information. We demonstrate its application to a dataset representing individuals of 22 

a threatened Aotearoa New Zealand bird species, the hihi, genotyped on a 50K SNP array. 23 

We detected numerous incorrect genotype-ID associations when comparing observed and 24 

genetic sex or comparing to relationships in a verified microsatellite pedigree. The framework 25 

proposed here helped to confirm 488 individuals (39%), correct another 20 bird-genotype links, 26 

and detect hundreds of incorrect sample IDs, emphasizing the value of routinely checking 27 

genetic and genomic datasets for their accuracy. We therefore promote the implementation 28 

and reporting of this simple yet effective sample verification framework as a standardized 29 

quality control step for studies in the field of molecular ecology. 30 

Keywords 31 
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Introduction 33 

Modern sequencing and genotyping technologies allow for high-quality processing and 34 

relatively cost-effective evaluation of biological data. At the same time, standardized laboratory 35 

handling protocols and quality checks should ensure sample identification – in theory. 36 

However, even the most experienced laboratory is not safe from the occasional sample mix-37 

up, often resulting in the affected sample being discarded if it is detected (Have et al., 2014; 38 

Wang et al., 2019). Sample mix-ups can happen at any stage in a research project: during 39 

data collection, labelling, transport and storage, or handling and processing in wet and dry 40 

laboratories (Figure 1), with laboratory mix-ups appearing to be particularly common (McClure 41 

et al., 2018). For example, label switches during lab work and sample contamination were 42 

detected in a recent avian genome sequencing project of hundreds of genomes (Feng et al., 43 

2020), pipetting error was concluded as the likely cause for sample mix-ups in a mouse gene 44 

expression study (Broman et al., 2019), and multiple samples were found to be cross-45 

contaminated during lab work for a mouse microbiome study (Lobo et al., 2019). 46 
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 47 

Figure 1: Examples of points in a research project where sample mix-ups could potentially occur. While sample 48 
errors are most likely to be detected at the end of a project from examining sequence or genotype data, sample 49 
mix-ups can happen at any stage, and can dramatically influence downstream conclusions.  50 

Although a few undetected mix-ups in a large-scale genomics study are unlikely to bias 51 

downstream analyses, large numbers of mix-ups bear significant costs. If detected, these mix-52 

ups represent substantial monetary loss and the ethical cost of sampling individuals that 53 

cannot be utilised. If undetected, sample mix-ups may result in incorrect research conclusions 54 

and suboptimal downstream decisions in applied contexts such as conservation management 55 

(Huang et al., 2013; Lohr et al., 2015). Despite these costs, and the increasing number of 56 

research projects that are generating large-scale individual genetic or genomic data, it appears 57 

common to assume that the ID of an individual is correctly associated with the right genetic 58 

information. Yet, even though some publications acknowledge that anomalies in their results 59 
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could be due to sample swaps (Li et al., 2020), many genomic studies do not appear to have 60 

implemented and/or reported a standardised approach for verifying sample identification, 61 

unless it was the main objective of the paper (Broman et al., 2015; Pedersen & Quinlan, 2017; 62 

Lobo et al., 2019). 63 

Beyond more general genomic data quality control such as sample duplicate checks, verifying 64 

sample identity will require the utilisation of existing metadata associated with the samples in 65 

a genomic dataset. For example, for many species, morphological or behavioural information 66 

can be used to infer the sex of an individual, and if sex markers can be identified from genomic 67 

data this can provide an initial check of the minimum number of sample misidentifications. In 68 

some cases, samples may be sequenced or genotyped on multiple platforms (for example, 69 

low coverage whole genome sequencing and transcriptome sequencing), providing 70 

opportunity to identify data from shared genomic regions and check for genotype consistency 71 

between datasets. Sample verification is also greatly facilitated by a pre-existing pedigree from 72 

previously generated genetic data (for example, a panel of microsatellite markers), as is the 73 

case in many long-term monitored populations (Dugdale et al., 2007; Walling et al., 2010; 74 

Nielsen et al., 2012; Chen et al., 2016; Johnston et al., 2016; Malenfant et al., 2016; de 75 

Villemereuil et al., 2019; Fitzpatrick et al., 2019; Niskanen et al., 2020). Samples can then be 76 

checked for Mendelian consistencies between previously identified close relatives. Further, 77 

genetic or genomic data has enabled family relationships to be inferred for thousands of 78 

additional shorter-term studies (see, for example, Flanagan and Jones (2019) and references 79 

therein). Inferred genetic relationships can then be compared with data recorded at collection 80 

(for example, fledglings sampled from the same nest) and checked for compatibility.  81 

Previous individual-based ecological studies have utilised some, although not necessarily all, 82 

available sample metadata to verify that genotyped or sequenced samples are correctly 83 

identified (see, for example, Sardell et al., 2010; Van Oers et al., 2014; Santure et al., 2015; 84 

Husby et al., 2015; Nietlisbach et al., 2015; Johnston et al., 2016; Huisman et al., 2016; 85 
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Lundregan et al., 2018; Duntsch et al., 2020; Feng et al., 2020; Cockburn et al., 2021; Debes 86 

et al., 2021; Grueber et al., 2021). Checks in these studies have included testing the 87 

consistency of genetic and morphological sex, detecting (unintended) sample duplicates, 88 

checking consistency with previously generated genomic data from the same loci, and 89 

generating additional targeted sequence data to confirm the presumed species. For 90 

populations where it is possible to infer pedigree relationships, Mendelian inheritance checks 91 

are also commonly reported. However, when we reviewed more than 200 recent publications 92 

in the field of molecular ecology (see Supplementary Material 1), we found that few individual-93 

based studies mentioned sample checks. The most commonly employed and reported 94 

measures to mitigate sample errors were the inclusion of positive and negative controls or a 95 

duplicate check (found in 30% of the publications). However, less than ten percent of the 96 

examined studies documented at least one individual sample-ID check in their main 97 

manuscript and none of the studies reported following a standardized protocol (Supplementary 98 

Material 1). 99 

This is, to our knowledge, because there is no sample-verification guideline available, neither 100 

for individual based ecological genomic data, nor in other applications such as eDNA or human 101 

studies where sample mix-ups have been reported (Have et al., 2014; Nicholson et al., 2020). 102 

Further, it does not appear to be standard practice to systematically report the validation of 103 

genetic, genomic or transcriptomic data and sample-ID assignments in ecological studies. This 104 

suggests that there may be numerous peer-reviewed studies that could have been impacted 105 

by sample mis-annotations, or that there are a significant amount of sample checks that go 106 

unmentioned.  107 

Given the costs of sample mix-ups, the challenge now is to move beyond inconsistent 108 

implementation and reporting of quality control steps and to put an intuitive and systematic 109 

framework in place. Admittedly, if very little observational and genetic metadata is available, it 110 

may not be possible to infer genotypes or sequences that have been incorrectly assigned to 111 
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sample identifiers. However, the majority of individual-level studies in molecular ecology are 112 

likely to be able to identify and also, in some cases, correct, sample mix-ups. With this in mind, 113 

we have developed a framework to serve as a guideline for ecologists to quality check their 114 

data and confidently identify, quantify and potentially resolve sample mix-ups. The proposed 115 

standard process for ecological data checking should be universally applicable to any 116 

individual-based dataset, including those that may contain morphological, location, additional 117 

genetic, relationship / pedigree or other metadata.  118 

Here, we present a novel sample verification framework for molecular ecologists and 119 

demonstrate its application to a single nucleotide polymorphism (SNP) array dataset that was 120 

intended to include genotypes of 1,256 hihi (stitchbird; Notiomystis cincta), a threatened bird 121 

species of Aotearoa New Zealand. In early 2019, a routine quality control check comparing 122 

recorded morphological sex with SNP array-inferred sex of the genotyped individuals revealed 123 

a large number of discrepancies. This incident motivated the development of a framework that 124 

would help researchers detect and occasionally resolve sample errors before they perform 125 

downstream analyses that require individual-level data. As far as we are aware, this is the first 126 

sample verification framework to provide a step-by-step guide, detailed examples and 127 

additional notes on data handling pre and post analysis and we recommend implementing this 128 

easy-to-follow routine to anyone dealing with individual genetic or genomic data. 129 

A survey among molecular ecologists 130 

In 2020, we designed a short questionnaire for researchers working with genetic data, asking 131 

whether they had encountered sample mix-ups, and about their sample protocols and how 132 

they detect and deal with erroneous samples. The survey was designed in Qualtrics and 133 

included four questions, all of which allowed an optional free-text response. Participants did 134 

not need to answer all questions, and for some questions, multiple options could be chosen 135 

(Supplementary Material 2). We distributed the survey via email invitations and Twitter. 136 
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Participants were not limited to those working in molecular ecology, but were likely to be the 137 

majority of respondents given our networks and contacts. We had the survey open online for 138 

one month and received 303 responses, 285 of which answered and met the eligibility criteria 139 

of (i) 18 or older and (ii) frequently or occasionally working with genetic data.  140 

Our survey results indicate that sample mix-ups occur regularly in laboratories around the 141 

world, with 79.55% (214/269 that answered this question) of respondents agreeing that they 142 

had encountered a sample mix-up in their lab. For those that have protocols in place to verify 143 

sample identity, checking population structure and sex were one of the most commonly used 144 

methods, along with checks for Mendelian consistency based on known family relationships. 145 

Participants indicated that they believe most mistakes happen in the wet lab, with tube 146 

mislabelling, inconsistent sample indexing and pipetting mistakes on genotyping plates 147 

provided as common errors made in sample processing. Further, the survey indicated that 148 

once a sample mix-up was detected, samples were usually discarded, and other samples 149 

checked. Eighty nine percent (195/219) of the participants stated that they would welcome 150 

protocols for an extra quality control step that ensures sample identity (Supplementary Material 151 

2). Whilst our survey was open to all who met our eligibility criteria, we caution that the group 152 

of voluntary participants may be biased toward researchers motivated to report their sample 153 

mix-up experiences. 154 

Overview of the framework 155 

Together with our own experience of hihi sample mix-ups, our survey findings motivated this 156 

manuscript and the construction of a sample verification framework (Figure 2) to serve as a 157 

resource for the wider community of molecular ecologists at the post-data collection stage. As 158 

detailed below, we propose a framework for genomic data to identify potential sample mix-ups. 159 

We recommend initially assuming all samples are unvalidated and following a set of steps to 160 

identify and flag those whose metadata and genetic information do not agree. Samples should 161 
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ultimately be classified as confirmed, corrected, rejected or remaining unvalidated, and a 162 

decision made as to the degree of uncertainty that is acceptable in taking these samples 163 

forward for analysis. While we predominantly focus on SNP data generated from, for example, 164 

whole genome sequencing, reduced-representation resequencing or targeted SNP 165 

genotyping, the presented framework is equally applicable to transcriptome data and other 166 

molecular genetic markers such as microsatellites. We assume that all studies have already 167 

followed standard workflows to produce a high quality genomic dataset (see e.g. O’Leary et 168 

al., 2018). Sample checks that everyone can then perform and report include checking positive 169 

and negative controls, removing duplicates, identifying mixed samples and an initial analysis 170 

to infer structure in the genetic or gene expression data. Moreover, additional metadata 171 

(including species or subspecies designation, location, observed sex, cohort, year of birth and 172 

experimental control treatment) can be used to help check and cross-validate sample identity. 173 

If relationship information is available, a check for Mendelian errors and a comparison of 174 

pedigree and genomic relatedness can identify further mix-ups. Parentage assignment 175 

programs may be used to further confirm sample identities and additional genomic data may 176 

help verify genotype-ID associations. Given that all genetic and genomic datasets are unique 177 

we do not provide recommended software for each of these checks, although we provide our 178 

own choices for hihi in Supplementary Material 3. 179 

Control, duplicate and mixture check 180 

Where experiments have included positive and negative controls during the extraction process 181 

and genotyping step, initial checks should identify whether genetic data has been produced 182 

from a well that should technically be free from it (negative control) or if the desired target 183 

sequence has indeed been generated (positive control). Unexpected data from these wells is 184 

likely to indicate a plating error, and we recommend flagging but keeping this sample in the 185 

dataset in the hope its identity can be resolved. Identity by state (IBS) allele sharing can be 186 

calculated between all pairs of individuals to identify expected (to quantify the genotyping error 187 
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rate) and unexpected sample duplicates, where two genetic samples have very high levels of 188 

identity. The sample with the highest quality genotype or sequence data and correct ID can be 189 

maintained in the dataset while their duplicate can be removed. Finally, a check on per-sample 190 

heterozygosity by plotting the distribution of heterozygosities could identify samples with 191 

unusually high or low heterozygosity. High heterozygosity is likely to indicate a mixed sample 192 

(cross-contamination; e.g. due to spill-over across wells) and should in most cases be 193 

rejected. Individuals with very low heterozygosity may point to issues with coverage and in 194 

most cases will have been identified from the genomic quality control preceding this 195 

framework. 196 

 197 
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 198 

Figure 2: A molecular ecology framework to help detect genomic sample mix-ups. The framework presents 199 
common data checks (positive and negative controls, duplicates) and an analysis of data structure as universally 200 
applicable steps (i. green). The orange pathway describes sample checks if additional metadata (such as 201 
phenotypes, birth year, plate information and field notes) is available. Some studies can also draw information from 202 
previously established pedigrees or phylogenies (ii. orange) and sometimes additional genetic data (iii. purple). The 203 
goal of this framework is to make lists that contain the confirmed, corrected, rejected and unvalidated samples for 204 
future data analyses and management (iv. blue). Figure created with Lucidchart.com. 205 
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Data structure analysis 206 

We suggest inferring genetic or transcriptomic structure, for example by running a principal 207 

component analyses (PCA) on all samples. This will enable an initial check to determine 208 

whether individuals fall into clearly defined clusters as might be expected between different 209 

treatment groups in a transcriptomic study. In the case that genetically differentiated individuals 210 

or groups are identified, and in the absence of any other sample information and/or expectation 211 

of genetic structuring, this analysis might suggest that e.g. individuals from cryptic species 212 

have unintentionally been sampled, or the sample has been contaminated. These samples 213 

should be flagged and treated carefully in further analyses. 214 

Sample checks with additional metadata 215 

In many cases, additional metadata can be leveraged to check sample identities. Observations 216 

from many wild populations include documentation of the (presumed) sex of an individual, 217 

whether it is an adult or juvenile, its location and a date of sampling. Other metadata including 218 

morphological, life-history, relationship and previous genetic data can also be utilised to check 219 

and confirm sample identity. We note that discrepancies between genetic data and the 220 

metadata they relate to may in fact reveal inaccuracies in the metadata or in the assumptions 221 

underlying that data, e.g. it may be assumed a species is monogamous but genomic data 222 

suggests instances of extra pair paternity, or a species presumed not to be migratory appears 223 

outside its range. We therefore recommend also treating metadata with some caution, and 224 

assessing whether there is enough evidence to firmly reject an ID-genetic sample association 225 

if it is discordant with this data. 226 

Species or subspecies verification 227 

In many cases, individuals will have been identified to species or subspecies level during 228 

collection, based on e.g. morphology or occurrence within known species ranges. Population 229 

structure and assignment plots can help verify whether individuals group consistently 230 
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compared to expectation. Where sequence data from the present experiment is available, 231 

sequences can be compared to previous genetic data from the same species, available 232 

genome assemblies or reference databases such as Genbank. Low coverage whole genome 233 

resequencing, sequence capture and even reduced representation sequencing may capture 234 

mitochondrial genome sequences (Stobie et al., 2019; Allio et al., 2020), with confirmation that 235 

this mitochondrial sequence matches the expected species being particularly useful in 236 

phylogenomic studies, where the samples are distantly related. The quality and proportion of 237 

reads mapping to an existing reference genome can also confirm species identity. If multiple 238 

species have been sampled, a sample mix-up would be easily identifiable if it appears in a very 239 

different clade within a phylogenetic tree and should be rejected, although in some cases it 240 

may be possible to correct these samples. There is the option to confirm morphological 241 

identifications by using BLAST or to genotype additional genomic loci to identify 242 

misidentifications within the sampled pool. When individuals have been sampled across 243 

various geographic locations, population clustering can be verified based on the genetic data 244 

with published distribution maps, and if samples cluster unusually, especially if migration 245 

between locations is not possible, it can be flagged as a potential sample misidentification. 246 

Additionally, datasheets containing all measured traits and metadata should be checked for 247 

recording errors and consistent data entry. 248 

Population structure analysis 249 

In almost all cases, sampling location will be recorded or available, and/or there will be some 250 

previous knowledge of the ecology or genetic structure of the species. In this case, the 251 

inference of population structure (see above) or genetic assignment analysis will enable a 252 

check to determine whether individuals fall into defined populations or groups as might be 253 

expected from previous work, such as from mitochondrial haplotype networks or spatial or 254 

temporal structure inferred from microsatellite genotyping. Previous genetic knowledge about 255 

sub-populations of interest can also help confirm sample IDs. For instance, summary statistics 256 
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such as the relative genetic diversity of different cohorts, ages or locations can be compared 257 

across new and old datasets. Strong structure may also be expected based on the life history 258 

or ecology of the species. For example, in the case where there is an expectation that 259 

genotyped populations have little or no gene flow, individuals from one sampling site clustering 260 

with another can reveal sample mix-ups across locations, and is an indication that within-261 

population mix-ups are also likely to have occurred. Population structure across time may also 262 

be expected for e.g. species with sweepstakes reproductive success, with a lack of expected 263 

structure similarly indicating that sample mix-ups may have occurred. Individuals that clearly 264 

fall in the wrong cluster can be flagged (and rejected if there is no known migration or other 265 

process that would explain this). 266 

Sex check 267 

For species with some evidence of genetic sex-determination, sex-linked markers may be 268 

known based on previous work. Heterozygosity at these markers can be used to distinguish 269 

the homogametic (very low or no heterozygosity) and heterogametic (higher heterozygosity) 270 

sex. Putative sex-linked markers can sometimes be identified de novo based on unusual 271 

genotype frequencies or alignment of sequencing reads to a reference genome of the species 272 

or a closely related species where the sex chromosome has been identified. In some species 273 

morphological or observational data provides unambiguous sex for an individual that the 274 

genetic sample can be checked against. Individuals where there is confidence in the recorded 275 

sex, and the recorded and newly assigned genetic sex differ, should in most cases be rejected, 276 

although in some cases where it may be possible to re-visit an individual in the field and check 277 

their sex (e.g. a banded bird), the observational sex can be corrected. In addition, if the 278 

proportion of male and female individuals inferred from the genomic data is significantly 279 

different from the proportions that were expected when selecting samples for genotyping, this 280 

may also indicate that sample mix-ups have occurred. 281 
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Metadata consistency with inferred pedigree  282 

For populations without intensive monitoring or where samples are anonymous (e.g. faecal 283 

sampling), pedigrees or relationships are unlikely to be known or are not previously genetically 284 

verified. In these cases, pedigree construction from the current genomic data is a useful 285 

approach to help validate sample identities, particularly when knowledge of the spatial or 286 

temporal sampling of individuals can exclude the possibility of first-degree relationships 287 

between pairs or groups of individuals. For example, a parent-offspring relationship between 288 

two individuals sampled ten years apart is unlikely in a short-lived species and one or both of 289 

these individuals should be rejected. For many species, co-occurrence of individuals, for 290 

example offspring in a nest or seedlings surrounding a plant, can indicate potential first-degree 291 

relationships, for example between siblings or mother-offspring, often indicated by consecutive 292 

numbering of samples. Inconsistency with these observed putative relationships may not 293 

necessarily indicate that the sample needs to be rejected, but consistency with this spatial or 294 

temporal metadata such as sample location, year of birth and sampling and sample naming 295 

can help confirm sample IDs. 296 

Relatedness and inheritance check 297 

For some populations, particularly those for which individuals are tracked (e.g. through marking 298 

or banding), robust information about relationships may be known from previous genetic work. 299 

Where a verified genetic pedigree is available, detection of errors requires that the new 300 

genomic data and the original DNA (that was used to build the pedigree in the first place) do 301 

not come from the same, potentially erroneous, individual sample. Once the new genetic or 302 

genomic data has been obtained, genotyped individuals can be checked for genetic 303 

compatibility with their parents by counting the number of Mendelian inheritance errors for 304 

autosomal SNPs. When numerous genotypic mismatches are observed between the offspring 305 

and only one previously genetically verified parent, the parent sample should be rejected, 306 

while individuals that show similarly high numbers of mismatches with each parent should be 307 
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rejected. We note that inconsistencies with a previous pedigree may reflect lower power of a 308 

previous genetic dataset (e.g. a set of microsatellite markers) to correctly infer relationships. 309 

In this case, additional metadata may help resolve the true relationships.   310 

Building a custom matrix 311 

Where a multi-generational genetic pedigree is available, we propose to build a custom matrix, 312 

based on pairwise genomic and verified pedigree relatedness (Table 1). Rows represent all 313 

the genotyped individuals. The columns represent each individuals’ genotyped parents, full-314 

sibs and offspring based on the verified pedigree. Values in each cell are calculated based on 315 

the pedigree and genomic relatedness between the focal individual (row name) and each of 316 

their first-degree relatives’ ID. The genomic relatedness estimate can be chosen to be broadly 317 

consistent with the range of pedigree relatedness values, or standardised to similar values. 318 

Standardising the range of genomic relatedness to pedigree relatedness enables inbreeding 319 

to be taken into account, as both expected (pedigree) and realised (genomic) relatedness 320 

between first-degree relatives can exceed 0.5 (Hedrick & Lacy, 2015). Relatedness thresholds 321 

to designate related versus unrelated can be chosen based on the distribution of the difference 322 

between pedigree and (standardised) genomic relatedness estimates for verified parent-323 

offspring and siblings from the Mendelian error check when both parents are genotyped. 324 

Relatedness values for parents and offspring will have smaller variance than for full sibs, but 325 

in most cases and with sufficient numbers of informative markers the distribution of first-degree 326 

relatives is relatively distinct from that of second or higher degree relatives (Städele & Vigilant, 327 

2016; Galla et al., 2020). Note that this approach will not detect sample mix-ups among full-328 

siblings if they themselves do not have offspring and their genetic and recorded sex are 329 

concordant, but mix-ups in most other cases should be identifiable and these individuals 330 

rejected.  331 

Table 1: Three example rows from a matrix with pairwise genomic relatedness values, and the difference between 332 
expected pedigree and genomic relatedness, between focal individuals A, B and C and their first-degree relatives 333 
(e.g. with F = father). In the case of individual A, a very low relatedness value with their mother (M) but relatedness 334 
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consistency with siblings (S) and offspring (O) suggest that the mother is a sample mix-up. For individual B, 335 
relatedness inconsistencies with all genotyped relatives suggest that individual B is a mix-up. All available pedigree 336 
relatedness values for individuals A and B are 0.5 (i.e. there is no inbreeding). For individual C, despite very high 337 
relatedness values reflecting extensive inbreeding in their pedigree, consistency between pedigree and genomic 338 
relatedness indicates no mix-up. NA designates ungenotyped relatives. Note: The pedigree and genomic 339 
relatedness values are taken from the worked hihi example as mentioned in the Supplementary Materials.  340 

In
d

iv
id

u
a
l Pedigree relatedness Genomic relatedness  Pedigree – genomic 

relatedness 

M F S1 S2 O1 O2 M F S1 S2 O1 O2 M F S1 S2 O1 O2 

A 0.5 0.5 0.5 NA NA NA 0.06 0.45 0.49 NA NA NA 0.44 0.05 0.01 NA NA NA 

B 0.5 0.5 0.5 0.5 0.5 0.5 -0.01 -0.04 -0.02 0.02 -0.05 0.06 0.51 0.54 0.52 0.48 0.55 0.44 

C 0.84 0.78 0.81 NA NA NA 0.78 0.76 0.78 NA NA NA -0.14 -0.02 0.03 NA NA NA 

The matrix may also be extended to include self-self relatedness, as highly inbred individuals 341 

should be expected to have both high pedigree and genomic relatedness values, and a large 342 

discordance between these values may indicate a sample mix-up. In addition, more distant 343 

relatives could be included in the matrix, although we caution that the variance in the difference 344 

between pedigree and genomic relatedness for these relationships may be too high to 345 

confidently confirm sample identity. If time is of essence, plotting genomic versus pedigree 346 

relatedness between all individuals (including individuals with themselves) can reveal 347 

individuals with pairwise genomic relatedness values that are very high or very low compared 348 

to their expected pedigree relatedness with others. These individuals can then be identified, 349 

flagged or rejected from the dataset. Note that given the large variance in relatedness 350 

estimates from a small number of markers, such as a microsatellite panel (Santure et al., 2010; 351 

Galla et al., 2020), we do not recommend directly comparing genomic and microsatellite 352 

relatedness to validate sample identity. 353 

Cross-validation 354 

As a last step for populations where a genetic pedigree is available, we suggest to cross-355 

validate that the confirmed samples are indeed assigned to the correct genotypes. For 356 

example, between all confirmed individuals and each class of first-degree relatives, we 357 

recommend creating a scatterplot to compare the distribution of pedigree-based relatedness 358 
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to that of the genomic relatedness and visually inspect for any outliers. This procedure is also 359 

an additional way of double-checking that all rejected ID-genotype associations for certain 360 

individuals are indeed false, or at least different from the verified pedigree relationships.  361 

A final step to cross-validate individuals whose relatedness and inheritance checks support a 362 

correct ID-genotype association is to use the new genomic data to reconstruct the pedigree. 363 

Doing so  can serve three purposes. First, as noted above, it can be used to validate the 364 

pedigree relationships, and hence sample IDs, that may have been assigned based on using 365 

fewer markers e.g. using a microsatellite dataset. This again implies that the different 366 

datatypes do not come from the same DNA extraction, in the case that the sample has been 367 

mixed up early on. Second, pedigree reconstruction may enable the identification of further 368 

sample mix-ups that were not apparent because individuals did not previously have any close 369 

pedigree relatives genotyped. In particular, if an individual is assigned as a parent, offspring or 370 

sibling to another individual in the dataset, but none of the original ID’s observed relatives were 371 

included in the genotyping, it is possible this individual has been mixed-up and hence should 372 

be rejected. Further, newly constructed pedigrees may be able to assign individuals new 373 

corrected sample IDs. For example, transposition of digits or numbers in IDs can easily occur 374 

in the field or lab. If individual P1009, identified in a matrix (such as Table 1) as a sample mix-375 

up, is assigned as a parent to an individual with pedigree father P1090, further checks (correct 376 

sex, relatedness consistency with other genotyped relatives) can be done to determine 377 

whether the sample ID has been incorrectly recorded and can be confidently corrected to 378 

P1090. Individuals passing all the above quality control steps are suitable for all downstream 379 

analyses, while rejected IDs could become subject to revision of their pedigree, re-sampling, 380 

or re-sequencing where possible. 381 

Genotype consistency 382 

Previous or additional genomic data including reduced representation, low-coverage or even 383 

high-coverage whole-genome sequencing all provide a means of confirming the sample ID 384 
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for the current genotypes or sequences under investigation. Where there is substantial overlap 385 

between genotyped regions (for example, a SNP array was designed using variation identified 386 

from low coverage whole genome sequencing, or individuals have been previously sequenced 387 

for a mitochondrial region that can also be identified from the current genomic data), genotypes 388 

from identical loci can be compared across platforms to check IBS sharing of an individual with 389 

itself or close relatives. Moreover, sequence data is often delivered as multiple sequencing 390 

runs per individual, hence replicates between flow cells or sequencing lanes can help to check 391 

for genotype consistency. 392 

Additional checks 393 

As outlined above, generating additional sequence data can be one way to help confirm the 394 

identity of samples. In addition, patterns during sample collection and processing, recorded in 395 

lab or field documentation, can also serve as an initial sample check (e.g. when certain labels 396 

have only been assigned on certain days to certain individuals). Lab and field notes can also 397 

be carefully checked to ensure that a putative sample mix-up is not due to e.g. individual IDs 398 

being reused across seasons or sites. If sex allocations are uncertain, and the sample 399 

population can be re-visited, additional observations can help re-assign or confirm a sex, at 400 

least if the individual is identifiable in the population, and the species shows sexual 401 

dimorphism. The individual can also be resampled and resequenced or regenotyped. Finally, 402 

for all analyses we recommend the comparison of multiple software outputs (such as clustering 403 

algorithms, inference of sex or parentage checks) in order to give further confidence that 404 

confirmed samples are in fact reliable.  405 

Summarise and report 406 

A final step is to prepare a summary table of confirmed, corrected, unvalidated and rejected 407 

ID-genetic data associations and a comprehensive summary of why these samples were 408 

confirmed, corrected, unvalidated or rejected. This information will help tailor datasets for 409 
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further analyses. For example, ‘unvalidated’ individuals that cluster in their expected cohort 410 

may still be useful for inference of population structure, and if individuals in a phylogenetic 411 

study have only been mixed up within species, they will still cluster as one group that is 412 

separated from the other clades. On the other hand, as soon as pedigrees or family 413 

relationships are being investigated or correlated, or genotype - phenotype analyses such as 414 

association mapping are planned, correct individual genotype-ID associations are paramount. 415 

Overall, it depends on the particular study question whether it is important to correctly identify 416 

to the species, the population or the individual level. 417 

If sources of error have been identified, appropriate measures should be put into place in order 418 

to minimize the risk of re-occurring sample mix-up incidences in the future. Re-sampling and 419 

re-sequencing where (ethically) possible are, of course, an alternative way of making sure the 420 

correct individuals are being genotyped or sequenced. In order to standardize field and 421 

laboratory protocols, we strongly encourage molecular ecologists to use this framework as a 422 

mandatory process any time data is being analysed, and to report all performed sample checks 423 

in the methods or supplementary material of their publication. 424 

Identifying sources of error 425 

As outlined above, a number of the steps in the framework can identify likely sample mix-ups. 426 

In some cases it may be possible to identify when these errors occurred, such as transcription 427 

errors in the field or lab. In a bird population, for example, sample mix-ups may be more likely 428 

to happen (and are harder to detect) between relatives if individual bird samples are collected 429 

within a nest setting. On the other hand, individual sampling by mist netting migrants or culling, 430 

may mean that sampling occurs more randomly and as a result, the error will be less biased 431 

by relationship. In both cases, the sampled individuals will most likely have sequential sample 432 

numbers, defined by those temporal and spatial factors. Additionally, one can try to trace back 433 

the sample mix-ups to specific extraction, genotyping or sequencing plates used in the wet lab 434 

in order to narrow down the number and source of samples that were possibly affected, which 435 
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can also help identify the cause for the sample mix-up (Broman et al., 2015). For example, 436 

errors arising from a small number of genotyping plates may indicate a systematic problem 437 

with one cohort of samples or one single step in the laboratory procedure. In some cases, it 438 

might even be feasible to generate duplicate genetic or genomic data for a small number of 439 

focal individuals to check whether data is consistent with previous genotyping. Consistent data 440 

indicates that the original samples may be mislabelled (perhaps due to a field error), while 441 

inconsistent data may point to an error during or after the most recent wet lab process (perhaps 442 

due to sample mis-plating).  443 

Implementation: the hihi project 444 

A total of 1,536 hihi individuals from five populations were genotyped on a custom 50K SNP 445 

array (Lee et al., 2021). To demonstrate the implementation of our framework, we focus on the 446 

verification of the 1,256 individuals from the reintroduced population of Tiritiri Mātangi 447 

(36°36'8"S, 174°53'13"E) presumed to be included on the array. These individuals had 448 

extensive metadata available, including multi-generational pedigree information previously 449 

verified using microsatellite markers (Brekke et al., 2013; de Villemereuil et al., 2019).  450 

Following individual and marker data control, we removed six unexpected duplicate samples. 451 

No positive or negative controls were included and could not be checked. Principal component 452 

analyses of individuals from all five populations indicated that population structure was weak, 453 

but did seem to indicate that Tiritiri Mātangi individuals were clustering as expected by 454 

population. We checked for and detected 126 inconsistencies between recorded and genetic 455 

sex in the Tiritiri Mātangi individuals.  456 

Table 2: Summary table of all the confirmed and rejected sample-genotype associations after following the steps 457 
of the suggested framework with the 1,256 hihi genotypes from Tiritiri Mātangi. 488 IDs were ‘confirmed’ through 458 
parentage assignment and having the correct sex and relatedness with other close relatives. 42 samples had two 459 
parentage assignment softwares agreeing on a different parental pair than the validated pedigree. Based on these 460 
assignments, 20 of these samples could unambiguously be assigned a new ID and are shown as ‘corrected’ while 461 
the other 22 were ‘rejected’ The remaining ‘rejected’ samples were duplicates, had a different parental pair in all 462 
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pedigrees or were the wrong sex. Unvalidated samples were the correct sex but did not have enough additional 463 
information (i.e., few or no genotyped close relatives) available to be categorized in any way. 464 

Sample status Confirmed Corrected Rejected Unvalidated 

Number of 
samples 

488 20 256 492 

Comparisons between genomic and validated microsatellite pedigree relatedness revealed 465 

more than one hundred hihi individuals with near-zero relatedness towards all their (expected) 466 

relatives. We used two pedigree reconstruction softwares to reconstruct and check pedigree 467 

relationships for all Tiritiri Mātangi individuals. A total of 508 samples could be confirmed or 468 

corrected, although a further 256 are clearly incorrectly labelled and 492 hihi could not be 469 

validated (Table 2; detailed methods in Supplementary Material 3). Even though hundreds of 470 

animals remained unvalidated, the implementation of our framework allowed for more than one 471 

third (39%) of the Tiritiri Mātangi hihi in this genotyping project to be confirmed (Figure 3). 472 

These confirmed individuals have been reliably used for downstream population analyses for 473 

this threatened species (Duntsch et al., 2020; Duntsch et al., 2021). 474 

 475 

Figure 3:  The association between genomic and pedigree relatedness of the hihi on Tiritiri Mātangi for all unique 476 

samples (right panel, N=1,250) and only the confirmed samples (right panel, N=488). The pedigree-based 477 

relationship matrix was calculated using the R package kinship2 (Sinnwell et al., 2014), the genomic relationships 478 

were calculated with the tool GCTA (Yang et al., 2011). The warmer the colour, the more pairs show a specific 479 

relatedness, with most pairs being unrelated. In the left panel, some individuals show high pedigree yet no genomic 480 
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relatedness, or low pedigree with high genomic relatedness, an indication of sample error. These erroneous links 481 

have disappeared after sample checking (right panel). 482 

After re-tracing the entire sampling and sequencing process, we were able to narrow down a 483 

potential origin of the sample mix-ups of the hihi genotypes. Because the same set of samples 484 

had previously been extracted and microsatellite genotyped (Brekke et al., 2013; de 485 

Villemereuil et al., 2019) and in this previous work the vast majority of observational and 486 

genotyped mother-offspring relationships were in agreement with each other, sample errors 487 

are unlikely to have occurred in the field. Therefore, we suspect that most errors in our SNP 488 

datasets occurred in the wet lab during the re-extraction of samples for the SNP array 489 

genotyping. 490 

Discussion 491 

Here, we present a framework for the use of genetic data and additional metadata to check 492 

sample IDs, and apply it to validate the sample identity of over 500 hihi individuals genotyped 493 

on a SNP array. The framework is designed to guide and encourage researchers to routinely 494 

implement and report an additional quality control step into their data processing routine. 495 

Incorrect ID-genetic data links lower the robustness and power of a study and can possibly 496 

corrupt many of the underlying statistics and assumptions (Huang et al., 2013; Lohr et al., 497 

2015). Hence, it is important to standardize protocols for data sampling and handling and 498 

ensure detailed documentation (e.g. online data sheets, shared drives, data sharing platforms 499 

such as the Genomics Observatory Metadatabase (GEOME; https://geome-db.org; Riginos et 500 

al., 2020)). For individual-based research in particular, such as genotype-phenotype analyses 501 

or inbreeding depression studies, it is crucial to be able to correctly match the phenotype of 502 

individuals with their genotype. This is particularly important when re-genotyping or re-503 

sampling is difficult, especially in small laboratories where funding is scarce, or when the raw 504 
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samples are no longer available to be re-analysed (e.g., the original sample has been used 505 

up).  506 

With more and more data being generated in laboratories all over the world, now is the time to 507 

develop standardised protocols as a resource for the wider science community. Our recent 508 

survey showed that sample errors have occurred in most laboratories (80%), and nearly 90% 509 

of the participants stated that they would welcome protocols for an extra quality control step 510 

that ensures sample identity. We encourage researchers to consistently document the results 511 

of their sample quality control in publications, in the same way that sequence and marker 512 

quality control is routinely reported. This will avoid the same problems being tackled by different 513 

researchers independently, reveal common and significant mistakes, improve the exchange of 514 

novel applications and methods, and finally contribute to more transparent research and 515 

reliable publications.  516 

The sample verification framework 517 

Although genomic data quality checks are relatively standard in molecular ecology research, 518 

we found very few studies that consistently report sample data checks. Most ecological studies 519 

will contain useful metadata that can also be leveraged to check sample identity. In addition, 520 

when some relationships are known from field observation or previous genetic data, there is 521 

the option to compare pedigree-based and genomic relatedness of the individuals in order to 522 

identify erroneous samples. Unfortunately, we were unable to identify a publicly available tool 523 

that reliably (and in a straightforward manner) checks for Mendelian errors across all close 524 

relatives. As this is an intuitive method when wanting to detect pedigree errors, we propose 525 

the construction of a custom-built relatedness matrix to check for inconsistencies between 526 

datasets, until a more appropriate tool becomes available. Approaches that estimate identity 527 

by descent sharing to classify more distant relatives are also likely to be helpful, for example 528 

when wanting to distinguish full sibs from parent-offspring (Waples et al., 2019).  529 
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After designing a framework to confirm sample identity with existing genomic data by 530 

comparing with our recorded metadata (including sex, location and pedigree relationships), we 531 

applied this protocol to 1,256 genotyped hihi samples. We were able to resolve more than a 532 

third of the samples and can therefore be confident about those individuals in our analyses. 533 

Our hihi dataset presents one of those scenarios where samples are scarce and precious, and 534 

re-genotyping of the individuals is simply not feasible from a financial perspective. If the sample 535 

mix-up had remained undetected, any downstream analysis would be biased and not 536 

representative of the true nature of evolutionary processes, such as inbreeding depression, in 537 

the examined population. Application of this framework has enabled us to create a smaller, yet 538 

reliable genomic dataset that has been used to quantify the adaptive potential of this 539 

threatened species (Duntsch et al., 2020; Duntsch et al., 2021). 540 

Where do sample mix-ups happen? 541 

An additional step when investigating sample mix-ups is to determine where in the data 542 

processing pipeline the mix-up may have occurred in order to prevent them from happening in 543 

the future. This can turn out to be a difficult task if the study system is lacking additional 544 

information such as a verified pedigree and phenotypic information or if the data handling 545 

procedures are not well documented and the genotyping technology unexplored (Have et al., 546 

2014). Sampling errors can happen from the moment the sample was taken in the field, during 547 

any stage of transportation and storage, in any step of the wet lab procedures and up to the 548 

moment when the bioinformatics processing commences (Figure 1). Our survey shows that 549 

researchers believe the majority of mistakes happen in the wet lab, meaning that human errors 550 

such as tube mislabelling, inconsistent sample indexing and pipetting on genotyping or 551 

sequencing plates may be common errors made in the processing of genetic data. 552 
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Avoiding sample mix-ups 553 

Ideally, of course, sample mix-ups are avoided throughout the entire process from data 554 

collection to research publication. In the field and before transport, it helps to regularly scratch 555 

sample ID and sampling date onto the sampling tubes with a pin or needle to avoid poor 556 

legibility or an accidental removal of labels. In the wet lab, one could move Eppendorf tubes 557 

from which or into which a sample was pipetted into a new rack to avoid pipetting from it (or 558 

into it) more than once. To avoid mix-ups within a genotyping plate, one could use aluminium 559 

plate covers when pipetting between plates and use the tip to puncture the plate cover, as well 560 

as make use of multi-channel pipettes to transfer samples between plates. Plate orientation 561 

should be carefully checked at each step of a protocol and when transferring between plates. 562 

Generally, it is advisable to consistently include positive and negative controls throughout the 563 

entire sample preparation and sequencing process, particularly when genetic work is being 564 

outsourced to external sequencing facilities, to minimise the number of sample handlers and 565 

to be careful with data entry, sorting and transfer. Further, it may be helpful to check samples 566 

received from collaborators or that have been in storage for some time – for example, 567 

amplifying a barcode sequence to confirm species identity, or amplifying previously identified 568 

sex markers to confirm individual sex. 569 

At a time where genomic data generation is not the limitation anymore, it is becoming more 570 

and more important to ensure thorough documentation and to standardise and share as many 571 

of the common lab practises as possible, to allow the early detection of sample errors. 572 

Interestingly, the scientific community has recently become more aware of the benefits of 573 

standardised processes across research groups, universities and countries. Biological meta-574 

databases like GEOME (Riginos et al., 2020) and Ira Moana 575 

(https://sites.massey.ac.nz/iramoana/; Liggins et al., 2021) collect commonly employed 576 

research methodology, promote data reusability and study reproducibility while providing 577 

templates and recommendations for study design and execution. What is more, there are 578 
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open-source platforms such as Galaxy (https://usegalaxy.org/), which aim to provide tools for 579 

researchers who are working with genomic data. 580 

Conclusion 581 

This project highlights the potential for samples to be resolved, but most importantly 582 

demonstrates the potential to detect the sample errors that inevitably can happen. While we 583 

can never fully avoid human error, we can certainly employ methods in order to make sure that 584 

those sample mix-ups, mislabelling and plating errors are identified, corrected and accounted 585 

for. In this paper, we developed a framework for working with individual genomic data samples, 586 

have explored the properties of a dataset that has undergone a major sample mix-up and 587 

demonstrated the potential of detecting (or neglecting) sample errors with regard to 588 

downstream analyses. We strongly recommend that a sample verification step is implemented 589 

into any data quality control routine of laboratories around the world, and identified errors 590 

routinely reported. Taking this extra measure of caution early in the sample handling process 591 

will prove to be crucial not only to adjust for human error and consequently reduce data 592 

processing costs, but also to be able to correctly inform ecological studies, inform conservation 593 

management and other applied outcomes and further contribute to a transparent science 594 

community. 595 
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Data Accessibility 813 

Supporting methods, results figures and tables are provided in the Supplementary Material. 814 

Supplementary Material 1 provides methods and results of a literature review of recent 815 

publications in the field of molecular ecology; Supplementary Material 2 provides a summary 816 

of the survey responses while Supplementary Material 3 describes the process of checking 817 

hihi SNP array data using the above described framework. Hihi are of cultural significance to 818 

the indigenous people of Aotearoa New Zealand, the Māori, and are considered a taonga 819 

(treasured) species whose whakapapa (genealogy) is intricately tied to that of Māori. For this 820 

reason, the genotypes and associated metadata for hihi will be made available by request on 821 

the recommendation of Ngāti Manuhiri, the iwi (tribe) that affiliates as kaitiaki (guardians) for 822 

hihi. To obtain contact details for the iwi, please contact Dr Anna Santure: 823 

a.santure@auckland.ac.nz. 824 
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Tables and Figures (with captions) 831 

 832 

Figure 4: Examples of points in a research project where sample mix-ups could potentially occur. While sample 833 
errors are most likely to be detected at the end of a project from examining sequence or genotype data, sample 834 
mix-ups can happen at any stage, and can dramatically influence downstream conclusions.   835 

• Same animal sampled more than once but labelled differently 

• Labelling unreadable 

• Incorrect sample placed into pre-labelled tube

• Wrong animal sampled

• Error in datasheet entry

• Miscommunication

In the field

• Sample tubes mixed up and randomly assigned a new 
transport box

• Ethanol spillage removed labels

• Sample storage space/fridge shelf wrongly labelled

• Boxes with samples repeatedly moved between freezers

• Miscommunication

Transport and Storage

• Incorrect sample placed into pre-labelled tube

• Sample duplicated, swapped or mislabelled

• Adjacent well cross-contamination

• Masterplate orientation rotated

• Mistakes in keeping lab book notes

• Sequencing facility error

In the wet lab

• Genotype assigned to wrong sample

• Re-formatting of data went wrong/ misannotation

• Inconsistent file naming/indexing

• Insufficient quality control

• Misunderstanding between collaborators

• Mistakes in data transfer

Data analysis



34 

 

 836 

Figure 5: A molecular ecology framework to help detect genomic sample mix-ups. The framework presents 837 
common data checks (positive and negative controls, duplicates) and an analysis of data structure as universally 838 
applicable steps (i. green). The orange pathway describes sample checks if additional metadata (such as 839 
phenotypes, birth year, plate information and field notes) is available. Some studies can also draw information from 840 
previously established pedigrees or phylogenies (ii. orange) and sometimes additional genetic data (iii. purple). The 841 
goal of this framework is to make lists that contain the confirmed, corrected, rejected and unvalidated samples for 842 
future data analyses and management (iv. blue). Figure created with Lucidchart.com.  843 



35 

 

Table 1: Three example rows from a matrix with pairwise genomic relatedness values, and the difference between 844 
expected pedigree and genomic relatedness, between focal individuals A, B and C and their first-degree relatives 845 
(e.g. with F = father). In the case of individual A, a very low relatedness value with their mother (M) but relatedness 846 
consistency with siblings (S) and offspring (O) suggest that the mother is a sample mix-up. For individual B, 847 
relatedness inconsistencies with all genotyped relatives suggest that individual B is a mix-up. All available pedigree 848 
relatedness values for individuals A and B are 0.5 (i.e. there is no inbreeding). For individual C, despite very high 849 
relatedness values reflecting extensive inbreeding in their pedigree, consistency between pedigree and genomic 850 
relatedness indicates no mix-up. NA designates ungenotyped relatives. Note: The pedigree and genomic 851 
relatedness values are taken from the worked hihi example as mentioned in the Supplementary Materials.  852 

In
d

iv
id

u
a
l Pedigree relatedness Genomic relatedness  Pedigree – genomic 

relatedness 

M F S1 S2 O1 O2 M F S1 S2 O1 O2 M F S1 S2 O1 O2 

A 0.5 0.5 0.5 NA NA NA 0.06 0.45 0.49 NA NA NA 0.44 0.05 0.01 NA NA NA 

B 0.5 0.5 0.5 0.5 0.5 0.5 -0.01 -0.04 -0.02 0.02 -0.05 0.06 0.51 0.54 0.52 0.48 0.55 0.44 

C 0.84 0.78 0.81 NA NA NA 0.78 0.76 0.78 NA NA NA -0.14 -0.02 0.03 NA NA NA 

  853 
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Table 2: Summary table of all the confirmed and rejected sample-genotype associations after following the steps 854 
of the suggested framework with the 1,256 hihi genotypes from Tiritiri Mātangi. 488 IDs were ‘confirmed’ through 855 
parentage assignment and having the correct sex and relatedness with other close relatives. 42 samples had two 856 
parentage assignment softwares agreeing on a different parental pair than the validated pedigree. Based on these 857 
assignments, 20 of these samples could unambiguously be assigned a new ID and are shown as ‘corrected’ while 858 
the other 22 were ‘rejected’ The remaining ‘rejected’ samples were duplicates, had a different parental pair in all 859 
pedigrees or were the wrong sex. Unvalidated samples were the correct sex but did not have enough additional 860 
information (i.e., few or no genotyped close relatives) available to be categorized in any way. 861 

Sample status Confirmed Corrected Rejected Unvalidated 

Number of 
samples 

488 20 256 492 

  862 
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 863 

Figure 6: The association between genomic and pedigree relatedness of the hihi on Tiritiri Mātangi for all unique 864 

samples (right panel, N=1,250) and only the confirmed samples (right panel, N=488). The pedigree-based 865 

relationship matrix was calculated using the R package kinship2 (Sinnwell et al., 2014), the genomic relationships 866 

were calculated with the tool GCTA (Yang et al., 2011). The warmer the colour, the more pairs show a specific 867 

relatedness, with most pairs being unrelated. In the left panel, some individuals show high pedigree yet no genomic 868 

relatedness, or low pedigree with high genomic relatedness, an indication of sample error. These erroneous links 869 

have disappeared after sample checking (right panel). 870 


